147 research outputs found

    Fasciola hepatica:The therapeutic potential of a worm secretome

    Get PDF
    The success of helminth parasites is partly related to their ability to modulate host immune responses towards an anti-inflammatory/regulatory phenotype. This ability resides with the molecules contained in the secretome of various helminths that have been shown to interact with host immune cells and influence their function. Consequently, there exists a unique opportunity to exploit these molecules for the prophylactic and therapeutic treatment of human pro- and auto-inflammatory disorders (for example septic shock, transplant rejection and autoimmune disease). In this review, we describe the mechanisms used by the trematode parasite, Fasciola hepatica, to modulate the immune responses of its host and discuss the potent immune-modulatory effects of three individual molecules within the secretome; namely cathepsin L1, peroxiredoxin and helminth defence molecule. With a focus on the requirements from industry, we discuss the strategies by which these molecules may be clinically developed to control human immune responses in a way that is conducive to the prevention of immune-mediated diseases

    How do parasitic worms prevent diabetes? An exploration of their influence on macrophage and β-cell crosstalk

    Get PDF
    Diabetes is the fastest growing chronic disease globally, with prevalence increasing at a faster rate than heart disease and cancer. While the disease presents clinically as chronic hyperglycaemia, two distinct subtypes have been recognised. Type 1 diabetes (T1D) is characterised as an autoimmune disease in which the insulin-producing pancreatic β-cells are destroyed, and type 2 diabetes (T2D) arises due to metabolic insufficiency, in which inadequate amounts of insulin are produced, and/or the actions of insulin are diminished. It is now apparent that pro-inflammatory responses cause a loss of functional β-cell mass, and this is the common underlying mechanism of both T1D and T2D. Macrophages are the central immune cells in the pathogenesis of both diseases and play a major role in the initiation and perpetuation of the proinflammatory responses that compromise β-cell function. Furthermore, it is the crosstalk between macrophages and β-cells that orchestrates the inflammatory response and ensuing β-cell dysfunction/destruction. Conversely, this crosstalk can induce immune tolerance and preservation of β-cell mass and function. Thus, specifically targeting the intercellular communication between macrophages and β-cells offers a unique strategy to prevent/halt the islet inflammatory events underpinning T1D and T2D. Due to their potent ability to regulate mammalian immune responses, parasitic worms (helminths), and their excretory/secretory products, have been examined for their potential as therapeutic agents for both T1D and T2D. This research has yielded positive results in disease prevention, both clinically and in animal models. However, the focus of research has been on the modulation of immune cells and their effectors. This approach has ignored the direct effects of helminths and their products on β-cells, and the modulation of signal exchange between macrophages and β-cells. This review explores how the alterations to macrophages induced by helminths, and their products, influence the crosstalk with β-cells to promote their function and survival. In addition, the evidence that parasite-derived products interact directly with endocrine cells to influence their communication with macrophages to prevent β-cell death and enhance function is discussed. This new paradigm of two-way metabolic conversations between endocrine cells and macrophages opens new avenues for the treatment of immune-mediated metabolic disease

    Stage-specific miRNAs regulate gene expression associated with growth, development and parasite-host interaction during the intra-mammalian migration of the zoonotic helminth parasite Fasciola hepatica

    Get PDF
    Abstract Background MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in organisms ranging from viruses to mammals. There is great relevance in understanding how miRNAs regulate genes involved in the growth, development, and maturation of the many parasitic worms (helminths) that together afflict more than 2 billion people. Results Here, we describe the miRNAs expressed by each of the predominant intra-mammalian development stages of Fasciola hepatica, a foodborne flatworm that infects a wide range of mammals worldwide, most importantly humans and their livestock. A total of 124 miRNAs were profiled, 72 of which had been previously reported and three of which were conserved miRNA sequences described here for the first time. The remaining 49 miRNAs were novel sequences of which, 31 were conserved with F. gigantica and the remaining 18 were specific to F. hepatica. The newly excysted juveniles express 22 unique miRNAs while the immature liver and mature bile duct stages each express 16 unique miRNAs. We discovered several sequence variant miRNAs (IsomiRs) as well as miRNA clusters that exhibit strict temporal expression paralleling parasite development. Target analysis revealed the close association between miRNA expression and stage-specific changes in the transcriptome; for example, we identified specific miRNAs that target parasite proteases known to be essential for intestinal wall penetration (cathepsin L3). Moreover, we demonstrate that miRNAs fine-tune the expression of genes involved in the metabolic pathways that allow the parasites to move from an aerobic external environment to the anerobic environment of the host. Conclusions These results provide novel insight into the regulation of helminth parasite development and identifies new genes and miRNAs for therapeutic development to limit the virulence and pathogenesis caused by F. hepatica. </jats:sec

    The National Competency Framework for registered nurses in adult critical care: An overview

    Get PDF
    In the years following the abolition of the English National Board for Nursing, Midwifery and Health Visiting (ENB) in 2002, concerns were raised within the Critical Care nursing community about a lack of consistency in post-registration education programmes. In response to this the Critical Care Network National Nurse Leads (CC3N) formed a sub-group, the Critical Care Nurse Education Review Forum (CCNERF) to address these concerns. A review of UK course provision confirmed marked inconsistency in the length, content and associated academic award. The CCNERF commenced a two phase project, first developing national standards for critical care nurse education such as length of course and academic credit level; followed by the development of a national competency framework1, 2. Following significant review and revision, version two of the National Competency Framework for Registered Nurses in Adult Critical Care was published by CC3N in 20153. This paper introduces the National Competency Framework and provides an overview of its background, development and implementation. It then considers the future direction of UK post-registration Critical Care nurse education

    The helminth derived peptide FhHDM-1 redirects macrophage metabolism towards glutaminolysis to regulate the pro-inflammatory response

    Get PDF
    We have previously identified an immune modulating peptide, termed FhHDM-1, within the secretions of the liver fluke, Fasciola hepatica, which is sufficiently potent to prevent the progression of type 1 diabetes and multiple sclerosis in murine models of disease. Here, we have determined that the FhHDM-1 peptide regulates inflammation by reprogramming macrophage metabolism. Specifically, FhHDM-1 switched macrophage metabolism to a dependence on oxidative phosphorylation fuelled by fatty acids and supported by the induction of glutaminolysis. The catabolism of glutamine also resulted in an accumulation of alpha ketoglutarate (Îą-KG). These changes in metabolic activity were associated with a concomitant reduction in glycolytic flux, and the subsequent decrease in TNF and IL-6 production at the protein level. Interestingly, FhHDM-1 treated macrophages did not express the characteristic genes of an M2 phenotype, thereby indicating the specific regulation of inflammation, as opposed to the induction of an anti-inflammatory phenotype per se. Use of an inactive derivative of FhHDM-1, which did not modulate macrophage responses, revealed that the regulation of immune responses was dependent on the ability of FhHDM-1 to modulate lysosomal pH. These results identify a novel functional association between the lysosome and mitochondrial metabolism in macrophages, and further highlight the significant therapeutic potential of FhHDM-1 to prevent inflammation

    Exploring the utility of circulating miRNAs as diagnostic biomarkers of fasciolosis.

    Get PDF
    Effective management and control of parasitic infections on farms depends on their early detection. Traditional serological diagnostic methods for Fasciola hepatica infection in livestock are specific and sensitive, but currently the earliest detection of the parasite only occurs at approximately three weeks post-infection. At this timepoint, parasites have already entered the liver and caused the tissue damage and immunopathology that results in reduced body weight and loss in productivity. Here, we investigated whether the differential abundance of micro(mi)miRNAs in sera of F. hepatica-infected sheep has potential as a tool for the early diagnosis of infection. Using miRNA sequencing analysis, we discovered specific profiles of sheep miRNAs at both the pre-hepatic and hepatic infection phases in comparison to non-infected sheep. In addition, six F. hepatica-derived miRNAs were specifically identified in sera from infected sheep. Thus, a panel of differentially expressed miRNAs comprising four sheep (miR-3231-3p; miR133-5p; 3957-5p; 1197-3p) and two parasite miRNAs (miR-124-3p; miR-Novel-11-5p) were selected as potential biomarkers. The expression of these candidates in sera samples from longitudinal sheep infection studies collected between 7 days and 23 weeks was quantified using RT-qPCR and compared to samples from age-matched non-infected sheep. We identified oar-miR-133-5p and oar-miR-3957-5p as promising biomarkers of fasciolosis, detecting infection as early as 7 days. The differential expression of the other selected miRNAs was not sufficient to diagnose infection; however, our analysis found that the most abundant forms of fhe-miR-124-3p in sera were sequence variants (IsomiRs) of the canonical miRNA, highlighting the critical importance of primer design for accurate diagnostic RT-qPCR. Accordingly, this investigative study suggests that certain miRNAs are biomarkers of F. hepatica infection and validates miRNA-based diagnostics for the detection of fasciolosis in sheep

    Understanding childhood asthma in focus groups: perspectives from mothers of different ethnic backgrounds

    Get PDF
    BACKGROUND: Diagnosing childhood asthma is dependent upon parental symptom reporting but there are problems in the use of words and terms. The purpose of this study was to describe and compare understandings of childhood 'asthma' by mothers from three different ethnic backgrounds who have no personal experience of diagnosing asthma. A better understanding of parents' perceptions of an illness by clinicians should improve communication and management of the illness. METHOD: Sixty-six mothers living in east London describing their ethnic backgrounds as Bangladeshi, white English and black Caribbean were recruited to 9 focus groups. Discussion was semi-structured. Three sessions were conducted with each ethnic group. Mothers were shown a video clip of a boy with audible wheeze and cough and then addressed 6 questions. Sessions were recorded and transcribed verbatim. Responses were compared within and between ethnic groups. RESULTS: Each session, and ethnic group overall, developed a particular orientation to the discussion. Some mothers described the problem using single signs, while others imitated the sound or made comparisons to other illnesses. Hereditary factors were recognised by some, although all groups were concerned with environmental triggers. Responses about what to do included 'normal illness' strategies, use of health services and calls for complementary treatment. All groups were concerned about using medication every day. Expectations about the quality of life were varied, with recognition that restrictions may be based on parental beliefs about asthma, rather than asthma itself. CONCLUSION: Information from these focus groups suggests mothers know a great deal about childhood asthma even though they have no personal experience of it. Knowledge of how mothers from these ethnic backgrounds perceive asthma may facilitate doctor – patient communication with parents of children experiencing breathing difficulties

    LLIN Evaluation in Uganda Project (LLINEUP): factors associated with ownership and use of long-lasting insecticidal nets in Uganda: a cross-sectional survey of 48 districts.

    Get PDF
    BACKGROUND: Long-lasting insecticidal nets (LLINs) are a key malaria control intervention. To investigate factors associated with ownership and use of LLINs in Uganda, a cross-sectional community survey was conducted in March-June 2017, approximately 3 years after a national Universal Coverage Campaign (UCC). METHODS: Households from 104 clusters (health sub-districts) in 48 districts were randomly selected using two-staged cluster sampling; 50 households were enrolled per cluster. Outcomes were household ownership of LLINs (at least one LLIN), adequate LLIN coverage (at least one LLIN per 2 residents), and use of LLINs (resident slept under a LLIN the previous night). Associations between variables of interest and outcomes were made using multivariate logistic regression. RESULTS: In total, 5196 households, with 29,627 residents and 6980 bed-nets, were included in the analysis. Overall, 65.0% of households owned at least one LLIN (down from 94% in 2014). In the adjusted analysis, factors most strongly associated with LLIN ownership were living in a wealthier household (highest tercile vs lowest; adjusted odds ratio [aOR] 1.94, 95% CI 1.66-2.28, p  15 years (44.1%) were more likely to use nets than children aged 5-15 years (30.7%;  15 years: aOR 1.37, 95% CI 1.29-1.45, p < 0.001). CONCLUSIONS: Long-lasting insecticidal net ownership and coverage have reduced markedly in Uganda since the last net distribution campaign in 2013/14. Houses with many residents, poorer households, and school-aged children should be targeted to improve LLIN coverage and use. Trial registration This study is registered with ISRCTN (17516395)
    • …
    corecore